
SECURITY  CLASSIFICATION  OF  THI'    "AGE (^^■h^^ DBIS Entered) 

REPORT DOCUMENTATION PAGE 
READ INSTRUCTIONS 

BEFORE COMPLETING FORM 

1.    REPORT  NUMBER 

R83-920015-F 

Z. GOVT   ACCESSION   NO. 3.     RECIPIENT'S CATALOG  NUMBER 

4.    TITLE C«nd Sub</(le; 

FURTHER DEVELOPMENT  OF  A TRANSONIC  CASCADE 
ANALYSIS 

5.    TYPE OF  REPORT 4  PERIOD COVERED 

Final Report 
10 Aug  1982 -  10 Aug  1983 

6.    PERFORMING O^G.   REPORT  NUMBER 

7.    AUTHORf*; 

S.J.   Shamroth 
R.-J.   Yang 
H.   MrDnnald 

8.    CONTRACT OH GRANT NUMBERfJj 

N00019-82-C-0248 

9.    PERFORMING ORGANIZATION   NAME  AND  ADDRESS 

Scientific  Research Associates,   Inc. 
P.O.   Box A98 
Glastonbury,   CT       06033 

10.    PROGRAM  ELEMENT, PROJECT.  TASK 
AREA 4   WORK  UNIT NUMBERS 

11.    CONTROLLING OFFICE  NAME  AND  ADDRESS 

Naval Air Systems  Command,   Code AIR-310 
Washington,  DC       20361 

12.    REPORT  DATE 

September  1983 
13.    NUMBER OF  PAGES 

46 
14.    MONITORING AGENCY  NAME  4   ADDRESSr// dl'/erent Irom Controlling Olltce) 

DCASMA - Hartford 
96 Murphy Rd. 
Hartford,   CT       06114 

15.    SECURITY CLASS, fo/ this report) 

Unclassified 
15a.     DECLASSIFI CATION/DOWN GRADING 

SCHEDULE 

16.     DISTRIBUTION   ST AT EM EN T fof (hi s Report 

APPROVED  FOR  PUBLIC  RELEASE 
DISTRIBUTION UNLIMITED 

17.    DISTRIBUTION  STATEMENT (ol the abstract entered in Block 20,  il diUerenl Irom Report) 

18.    SUPPLEMENTARY NOTES 

19.    KEY WORDS (Continue on reverse side il necessary and idenllly by block number) 

Transonic  Cascades 
Navier-Stokes 
Turbines 
Compressors 

20.     ABSTRACT  (Continue on revcrsB  side If necessary and identity by block number) 

A compressible,   time-dependent  solution of   the  Navier-Stokes   equations   is 
obtained  for both compressor  and   turbine  cascade  configurations   in  subsonic 
and   transonic  flows.     The  analysis  uses   the  Briley-McDonald  consistently 
split  linearized block  implicit   (LBI)   procedure   to  solve  the  governing 
equations.     Comparisons with measured  data  are  presented  for both  turbulence 
energy and mixing  length  turbulence models.      In  addition,   consideration  is 
given  to boundary  conditions   for  the  cascade   flutter  problem. 

DD 73    1473 EDITION   OF   1   NOV 65 IS OBSOLETE 
Unclassified 

SECURITY   CLASSIFICATION  OF  THIS  PAGE  (Vihen Data  Entered) 



LIBRARY 

RESEARCH REPORTS DIVISION 
NAVAL POSTGRADUATE SCHOOL 
MOMTEREY, CALIFORNIA 93943 

FURTHER DEVELOPMENT OF A TRANSONIC CASCADE ANALYSIS 

S. J. Shamroth, R.-J. Yang and H. McDonald 

^ Scientific Research Associates, Inc., 

Glastonbury, CT  06033 

September 1983 

Final Report 

Prepared Under Contract N00019-82-C-0298 

Prepared for 

NAVAL AIR SYSTEMS COMMAND 

Department of Navy 



TABLE  OF  CONTENTS 

Page 

INTRODUCTION     1 

ANALYSIS . .•    6 

Coordinate System   6 
Governing Equations   7 
Numerical Procedure   8 
Artificial Dissipation   9 
Boundary Conditions   12 

CURRENT EFFORTS    14 

f 

Code Efficiency  14 
Turbulence Model Modifications   15 
Unsteady Boundary Conditions    22 

CONCLUDING REMARKS   25 

REFERENCES     27 

FIGURES  30 

APPENDIX A - COORDINATE SYSTEM GENERATION    39 

APPENDIX B - SOLUTION PROCEDURE    42 



I.  INTRODUCTION 

The present report represents the latest portion of an ongoing effort 

aimed at the development of a Navier-Stokes analysis for the general steady or 

unsteady cascade flow field problem. Although the two-dimensional cascade 

analysis represents a simplified version of the actual three-dimensional flow 

field which includes end wall effects, the two-dimensional problem gives 

significant insight into the cascade flow field and obviously is a necessary 

first step in developing a three-dimensional analysis. Hence, cascade analyses 

of various types have been a subject of high interest in recent years. Among 

the analyses being pursued are inviscid analyses (e.g. Refs. 1 and 2), inviscid 

analyses with boundary layer corrections (e.g. Ref. 3) and Navier-Stokes 

analyses (e.g. Ref. 4 and 5). Each of these approaches are viable under 

certain circumstances. For example, inviscid analyses can give good 

predictions of the blade pressure distribution for conditions where the effect 

of viscous phenomena upon the blade pressure distribution remains small. 

However, inviscid analyses require some method of assuming airfoil circulation 

to obtain a unique flow solution.  In general this specification is 

straight-forward for sharp trailing edged blades in steady flow where the 

Kutta-Joukowski condition serves to specify circulation. However, in cases 

where the trailing edge is rounded or the flow is unsteady or trailing edge 

separation occurs specification of a proper condition is not clear. Finally, 

1. Farrel, C. and Adamczyk, J.:  Full Potential Solution of Transonic 
Quasi-3-D Flow Through a Cascade Using Artificial Compressibility.  ASME 
Paper 81-GT-70, 1981. 

2. Casper, J.R., Hobbs, D.E. and Davis, R.L.:  The Calculation of Two- 
Dimensional Compressible Potential Flow in Cascades Using Finite Area 
Techniques. AIAA Paper 79-0077, 1977. 

3. Hansen, E.G., Serovy, G.K. and Sockol, P.M.:  Axial Flow Compressor Turning 
Angle and Loss by Inviscid-Viscous Interaction Blade-to-Blade Computation, 
Journal of Engineering for Power, Vol. 102, 1980. 

4. Shamroth, S.J. and McDonald, H.:  An Assessment of an Ensemble-Averaged 
Navier-Stokes Calculation Procedure for Cascade Flow Fields.  Scientific 
Research Associates Report R82-920011-F, 1982. 

5. Shamroth, S.J., McDonald, H. and Briley, W.R.:  Prediction of Cascade Flow 
Fields Using the Averaged Navier-Stokes Equations.  To be published in ASME 
Journal of Engineering for Power. 



inviscid methods obviously cannot give either heat transfer or viscous loss 

estimates. Nevertheless, despite these inherent limitations, inviscid analyses 

are valuable for the prediction of blade pressure distributions for flows 

having little viscous displacement effect and a clearly applicable Kutta 

condition. 

Some limitations of inviscid analyses can be relieved by combining an 

inviscid flow calculation procedure for the pressure distribution with a 

viscous flow boundary layer development in either a strong interaction or a 

weak interaction mode. A recent example of a combined viscous-inviscid 

procedure is the work of Hansen, Serovy and Sockol (Ref. 3).  In cases where 

the viscous displacement effect has an insignificant or only small effect on 

the actual blade pressure distribution, an inviscid calculation can be made to 

obtain the pressure distribution and a boundary layer calculation then made to 

obtain heat transfer and loss effects.  However, in many cases the viscous 

displacement effect may significantly alter the pressure distribution.  Such 

cases are found when boundary layers become thick or separate or in transonic 

flow where the local pressure distribution and shock location become very 

sensitive to small change in the effective passage area.  In these cases a 

strong interaction solution is required to account for the mutual effects of 

the viscous boundary layer and the nominally inviscid core flow. 

A strong interaction analysis may take the form of either a forward 

marching procedure or a global iteration. For regions where the outer 

nominally inviscid flow is supersonic (and thus described by hyperbolic 

equations) a solution can be spatially forward marched in the nominally 

streamwise direction with the inviscid and viscous regions coupled on a 

station-by-station basis. The chief difficulty with this approach is the stiff 

nature of the coupled sets of equations which is manifested in the appearance 

of physically unrealistic branching solutions.  In regions where the outer flow 

is subsonic, the outer flow equations are elliptic in nature and in these 

regions forward marching in the streamwise spatial direction is not possible 

and consequently a series of viscous and inviscid calculations must be 

performed in which each corrects the other in a global manner.  Problems with 

interaction solutions become particularly severe in transonic flows where both 

subsonic and supersonic nominally inviscid regions are present and where small 

viscous displacement effects may have a major effect on the blade pressure 

distribution and shock location. A final difficulty with the interactive 

approach occurs when boundary layer separation appears. Here with an imposed 



pressure field, the usual steady state boundary layer equations are unstable 

when solved as an initial value problem in space in regions of reversed flow. 

However, the equations can be marched in space by suppressing the streamwise 

convection term in the separated region (Ref. 6). Although this approximation 

allows the solution to be marched through separation, the approximation becomes 

progressively more inaccurate as the extent of the separation zone or the 

magnitude of either the normal or the back flow velocities become large. Thus, 

calculated flow details which may be important (such as heat transfer at 

reattachment) may have significant error when separation is present and such an 

interactive analysis is used. Other schemes have and are being developed which 

solve the interaction problem without encountering an instability by either 

changing the problem to initial value in time or iteration space. Nonetheless 

the resulting solutions still retain the approximations of the boundary layer 

equations and the inviscid flow.  However, as with inviscid flow solutions, 

combined viscous and inviscid solutions remain a valuable tool for those 

classes of cascade problems where the approximations adopted are valid. 

The final procedure currently available is the solution of full 

ensemble-averaged Navier-Stokes equations.  Such an analysis has been applied 

to a variety of cascade flow fields by Shamroth, Gibeling and McDonald (Ref. 7) 

Shamroth, McDonald and Briley (Refs. 5, 8-10) and by Shamroth and McDonald 

(Ref. 4).  The use of the full Navier-Stokes equations for the cascade problem 

6. Rehyner, T. and Flugge-Lotz, I.: The Interaction of Shock Waves with a 
Laminar Boundary Layer. International Journal of Nonlinear Mechanics, 
Vol. 3, 1968. 

7. Shamroth, S.J., Gibeling, H.J. and McDonald, H.:  A Navier-Stokes Solution 
of Laminar and Turbulent Flow Through a Cascade of Airfoils.  AIAA Paper 
No. 80-1426, 1980.  (Also, SRA Report R79-920004-F, 1982.) 

8. Shamroth, S.J., McDonald, H. and Briley, W.R.: A Navier-Stokes Solution 
for Transonic Flow Through a Cascade.  SRA Report R82-920007-F, 1982. 

9. Shamroth, S.J., McDonald, H. and Briley, W.R.: Application of a Navier- 
Stokes Analysis to Transonic Cascade Flow Fields. ASME Paper 82-GT-235, 
1982. 

10. McDonald, H., Shamroth, S.J. and Briley, W.R.:  Transonic Flows with 
Viscous Effects, Transonic Shock and Multi-Dimensional Flows; Advances in 
Scientific Computing. Academic Press, New York, 1982. ~~ 



allows use of a single set of equations for the entire flow field and thus 

removes the need for an interaction analysis to couple different equation 

descriptions for different flow regions. The analysis simultaneously predicts 

both the blade pressure distribution and viscous and heat transfer effects. 

The initial effort in the present ongoing program Is detailed in Ref. 7 

where a constructive cascade coordinate system was combined with a 

Navier-Stokes calculation procedure to compute subsonic flow fields in a simple 

cascade of unstaggered NACA 0012 airfoils.  The coordinate system generation 

process was based upon that of Eiseman (Ref. 11).  The calculation procedure 

used was the linearized block implicit (LBI) method of Briley and McDonald 

(Ref. 12) which obtains a solution by marching the assumed initial flow field 

in time until a steady state is reached. Although the cases chosen were 

geometrically simple cascade flows, the convergence of the solution to steady 

state in a relatively few number of time steps (~150) showed the practicality 

of the approach. 

The approach was extended to more realistic cascade flow fields in Ref. 8 

where calculations for a cascade of Sanz airfoils were made. The coordinate 

system generation code developed by Eiseman was modified by Kim and Shamroth 

(Ref. 13) to allow specification of more general cascades than were previously 

allowed.  This new generalized code was used to generate the Sanz cascade 

coordinate system. In addition, under this effort, a study was made of 

possible artificial dissipation formulations.  Based upon results obtained for 

a model one-dimensional flow problem containing a shock wave, a second order 

artificial dissipation approach was judged to be an effective method of 

suppressing spatial oscillations resulting from a central difference 

representation of derivatives. This same technique was then applied to 

transonic flow through a cascade of Sanz airfoils.  It was demonstrated that 

11. Eiseman, P.R.: A Coordinate System for a Viscous Transonic Cascade 
Analysis.  Journal of Computational Physics, Vol. ^, March 1978, 
pp. 307-338. 

12. Briley, W.R. and McDonald, H.:  Solution of the Multi-Dimensional 
Compressible Navier-Stokes Equations by a Generalized Implicit Method. 
Journal of Computational Physics, Vol. 24, 1977. 

13. Kim, Y.-N. and Shamroth, S.J.:  Revised Coordinate Generation Program for a 
Cascade of Arbitrary Shaped Airfoils.  SRA Report 81-1, 1981. 



second order artificial dissipation could be added to the governing equations 

in a manner which would suppress spurious spatial oscillations but not 

significantly contaminate the solution. 

Finally, in Ref. 4 the same procedure was used to calculate flow through 

turbine and compressor cascade where experimental data was available.  The 

turbine cascade chosen was that of Turner (Ref. 14) and the compressor cascade 

that of Stephens and Hobbs (Refs. 15 and 16). Both subsonic and transonic flow 

conditions were considered and comparisons between calculation and measurement 

were made for both pressure distributions and velocity profiles.  In general 

the comparison for blade pressure distribution was judged to be good (see Ref. 

4 for details), however some discrepancy appeared in the boundary layer 

profiles. The present effort focuses upon a further study of the boundary 

layer profile comparison as well as consideration of boundary conditions to be 

applied for blade movement corresponding to small forced vibrations. 

14. Turner, A.B.: Local Heat Transfer Measurements on a Gas Turbine Blade. 
Journal of Mechanical Engineering Sciences, Vol. 13, 1971. 

15. Stephens, H.E. and Hobbs, D.E.:  Design and Performance of Supercritical 
Airfoils for Axial Flow Compressors.  Pratt and Whitney Aircraft 
Report FR11455, 1979. 

16. Hobbs, D.E., Wagner, J.H., Dannenhoffer, J.F., Dring, R.P.:  Wake 
Experiment and Modelling for Fore and Aft-loaded Compressor Cascade. 
Pratt and Whitney Aircraft Report FR13514, 1980. 



II. ANALYSIS 

The present analysis is based upon a solution of the ensemble-averaged 

Navier-Stokes equations using the linearized block implicit method of Briley 

and McDonald (Ref. 12).  The equations are solved in a constructive coordinate 

system (Ref. 4) with density and the Cartesian velocity components being taken 

as dependent variables.  The application of the LBI method to the cascade flow 

field problem has been discussed in some detail in Refs. 4, and 7-10.  However, 

for completeness it will be repeated here along with a brief discussion of the 

coordinate system and governing equations. 

Coordinate System 

An important component of the cascade analysis is the cascade coordinate 

system. Any coordinate system used in the analysis should satisfy conditions 

of (i) generality, (ii) smoothness, (iii) resolvability and (iv) allow easy 

application of boundary conditions. Obviously, a coordinate system must be 

sufficiently general to allow application to a wide class of problems of 

interest if it is to be practical. The metric data associated with the coordi- 

nate system must be sufficiently smooth so that the variation from grid point 

to grid point does not lead to a numerical solution dominated by metric coef- 

ficient truncation error.  It should be noted that this requirement differs 

from the requirement of the existence of a specified number of transformation 

derivatives.  The coordinate system must resolve flow regions where rapid flow 

field changes occur.  Finally, coordinates should allow accurate implementation 

of boundary conditions; for the cascade this requirement is equivalent to the 

requirement that the metric coefficients be continuous across the periodic 

lines where periodic boundary conditions are to be applied. 

To date, several types of coordinate systems are available. These include 

(i) solutions based upon a conformal transformation, (ii) solutions based upon 

solution of a Poisson equation (e.g. Ref. 17), and constructive systems.  The 

present approach uses a constructive system based originally upon the approach 

of Eiseman (Ref. 11) which has been revised by Kim and Shamroth (Ref. 13).  A 

17.  Thompson, J.F., Thames, F.C. and Mastin, C.W.:  Boundary Fitted Curvi- 
linear Coordinate Systems for Solution of Partial Differential Equations 
on Fields Containing Any Number of Arbitrary Two-Dimensional Bodies. 
NASA CR-2729, July 1977. 



computer generated plot of the coordinate system for the Jose Sanz diffusion 

cascade is shown in Fig. 1. As can be seen in Fig. 1, the coordinate systems 

consist of two sets of curves; the E,  = constant curves such as FG or HI and the 

ri = constant curves such as ABCD or A'ED'. In constructing the coordinate 

system care must be taken that metric data remains smooth from grid point to 

grid point, and adequate resolution is obtained both near the blade surface and 

in the leading edge region. Details of the construction process are given in 

Appendix A. 

Governing Equations 

The present effort solves the time-dependent compressible Navier-Stokes 

equations to predict the cascade flow field.  If the computational spatial 

coordinates are K  and n where 

C'Cix,y,t) Tj'7]ix,y,1) r-t      (D 

then the continuity equation, the x-component of the momentum equation and the 

y-component of the momentum equation are written as 

^w        av/ dF dG aw dF dG 

\ .   aP|      5F,      dG, dG,  1 (2) 

where 

G-l L     I  F, .( r„|  G 
/'^'■^P/     \ r"/  '  \ r'W  (3) 

D    -    e,77y  -   ^y77^ 

In Eqs. (1-3) x and y are Cartesian coordinates, t is time, u and v are 

velocity components, p is density, p is pressure, and x^j is the stress 



tensor and Re is the Reynolds number. This formulation Is termed the 

quasi-linear form and has been used successfully for a number of cascade and 

airfoil calculations [7-10, 18, 19] for both laminar and turbulent flow in the 

subsonic and transonic regimes. 

The dependent variables chosen for the present formulation are the 

density, p, and the velocity components, u and w. Although the code does 

contain an energy equation and calculations have been made with an energy 

equation, most calculations have been run with the assumption T", the 

stagnation temperature, equals a constant. With this assumption, the pressure 

is related to the velocity and density by 

"-  P^     T°-^^5^^ W 

Numerical Procedure 

The numerical procedure used to solve the governing equations is a 

consistently split linearized block implicit (LBI) scheme originally developed 

by Brlley and McDonald (Ref. 12). A conceptually similar scheme has been 

developed for two-dimensional MHD problems by Lindemuth and Killeen (Ref. 20). 

The procedure is discussed in detail in Refs. 12 and 21.  The method can be 

briefly outlined as follows:  the governing equations are replaced by an 

implicit time difference approximation, optionally a backward difference or 

18. Shamroth, S.J. and Gibeling, H.J.: A Compressible Solution of the Navier- 
Stokes Equations for Turbulent Flow about an Airfoil. NASA CR-3183, 1979. 
(Also, AIAA Paper 79-1543). 

19. Shamroth, S.J. and Gibeling, H.J.: Analysis of Turbulent Flow about an 
Isolated Airfoil Using a Time-Dependent Navier-Stokes Procedure. AGARD CP 
296, 1980. 

20. Lindemuth, I. and Killeen, J.:  Alternating Direction Implilcit Techniques 
for Two-Dlmensional Magnetohydrodynamic Calculations.  Journal of 
Computational Physics, _13.» 1973. 

21. Brlley, W.R., and McDonald, H.:  On the Structure and Use of Linearized 
Block Implicit Schemes.  Journal of Computational Physics, Vol. 34, 1980. 



Crank-Nlcolson scheme. Terms involving nonlinearities at the implicit time 

level are linearized by Taylor expansion in time about the solution at the 

known time level, and spatial difference approximations are introduced. The 

result is a system of multi-dimensional coupled (but linear) difference 

equations for the dependent variables at the unknown or implicit time level. 

To solve these difference equations, the Douglas-Gunn (Ref. 22) procedure for 

generating alternating-direction implicit (ADI) schemes as perturbations of 

fundamental implicit difference schemes is introduced in its natural extension 

to systems of partial differential equations. This technique leads to systems 

of coupled linear difference equations having narrow block-banded matrix 

structures which can be solved efficiently by standard block-elimination 

methods. 

The method centers around the use of a formal linearization technique 

adapted for the integration of initial-value problems.  The linearization 

technique, which requires an implicit solution procedure, permits the solution 

of coupled nonlinear equations in one space dimension (to the requisite degree 

of accuracy) by a one-step noniterative scheme.  Since no iteration is required 

to compute the solution for a single time step, and since only moderate effort 

is required for solution of the implicit difference equations, the method is 

computationally efficient; this efficiency is retained for multi-dimensional 

problems by using what might be termed block ADI techniques.  The method is 

also economical in terms of computer storage, in its present form requiring 

only two time-levels of storage for each dependent variable.  Furthermore, the 

block ADI technique reduces multi-dimensional problems to sequences of 

calculations which are one-dimensional in the sense that easily-solved narrow 

block-banded matrices associated with one-dimensional rows of grid points are 

produced.  A more detailed discussion of the solution procedure as discussed by 

Briley, Buggeln and McDonald (Ref. 23) is given in the Appendix B. 

Artificial Dissipation 

Since the calculations of interest are often at high Reynolds numbers 

22. Douglas, J. and Gunn, J.E.:  A General Formulation of Alternating 
Direction Methods.  Numerische Math., Vol. 6, 1964, pp. 428-453. 

23. Briley, W.R., Buggeln, R.C. and McDonald, H.:  Computation of Laminar 
and Turbulent Flow in 90 Degree Square Duct and Pipe Bends Using the 
Navier-Stokes Equations.  SRA Report R82-920009-F, 1982. 



typical of normal turbomachinery applications, it is necessary to add 

"artificial dissipation" terms to suppress spatial oscillations associated with 

central spatial differences approximations.  This can be done via a dissipative 

spatial difference formulation (e.g., one-sided difference approximations for 

first derivatives) or by explicitly adding an additional dissipative type 

term.  For the Navier-Stokes equations, the present authors favor the latter 

approach since when an additional term is explicitly added, the physical 

approximation being made is usually clearer than when dissipative mechanisms 

are contained within numerical truncation errors, and further, explicit 

addition of an artificial dissipation term allows greater control over the 

amount of non-physical dissipation being added.  Obviously, the most desirable 

technique would add only enough dissipative mechanism to suppress oscillations 

without deteriorating solution accuracy.  Various methods of adding artificial 

dissipation were investigated in Ref. 8, and these were evaluated in the 

context of a model one-dimensional problem containing a shock with a known 

analytic solution (one-dimensional flow with heat transfer).  The methods which 

were considered included second-order dissipation, fourth-order dissipation and 

pressure dissipation techniques. 

As a result of this investigation, it was concluded that a second-order 

anisotropic artificial dissipation formulation suppressed spatial oscillations 

without impacting adversely on accuracy and could be used to capture shocks 

successfully.  In this formulation, the terms 

dx'^  '   '    ' dy' 

are added to the governing equations where (}) = u, v and p for the x-momentum, 

y-momentum and continuity equations, respectively.  The exponent n is zero for 

the continuity equation and unity for the momentum equations.  The dissipation 

coefficient d^ is determined as follows.  The general equation has an 

x-direction convective term of the form a9(j)/8x and an x-direction diffusion 

term of the form 8(b8(j)/3x)/8x.  The diffusive term is expanded 

10 



a(ba(^/dx)/dx =  bd^c^/ax^ +  db/dx d<p/dx (5) 

and  then a local  cell  Reynolds  number  Re^^ is  defined for  the x-direction by 

^®Ax   ~   \°~ ^b/dx Ax/b (6) 

where b is the total or effective viscosity including both laminar and 

turbulent contributions, and Ax is the grid spacing.  The dissipation coef- 

ficient dx is non-negative and is chosen as the larger of zero and the local 

quantity b (a^Re^x"!)*  The dissipation parameter c^ is a specified 

constant and represents the inverse of the cell Reynolds number below which no 

artificial dissipation is added.  The dissipation coefficient dy is evaluated 

in an analogous manner and is based on the local cell Reynolds number Re/^y 

and grid spacing Ay for the y-direction and the specified parameter Oy.  It 

should be noted that recently calculations have been run with artificial dissi- 

pation added in the conservative form 8(p^~-'^d 3(})/3x)/3x and no 

significant difference between the forms was noted for the particular flows 

examined. 

The question arises as to the values of a^  and Oy which should be 

chosen.  This was assessed both through the model problem (Ref. 8), and through 

calculations for a Jose Sanz compressor cascade (Refs. 4 and 8).  These results 

indicated that values of a = .5 which correspond to a cell Reynolds number 2 

limitation would severely damp physical variations.  However, when a was set 

in the range ,025 ^ a^  0.05, which correspond to a cell Reynolds number range 

between 40 and 20, spurious spatial oscillations were damped with no 

significant change in the calculated results as a  was varied in this range. 

Further, as discussed in Refs. 4 and 7-10, the results obtained showed good 

agreement with data.  This has since been confirmed at several other studies at 

Scientific Research Associates such as two- and three-dimensional transonic 

11 



nozzle flows (Ref. 24) where a maximum acceptable value of a = 0.10 has been 

noted for most problems.  Therefore, based upon this past experience, 

second-order damping is applied with a taken as 0.05. 

Boundary Conditions 

The authors' experience in solving Navier-Stokes equations has indicated 

the important role boundary conditions play in determining accurate solutions 

and rapid numerical convergence. The boundary conditions used in the present 

calculations follow the suggestion of Briley and McDonald (Ref. 25) which 

specifies upstream total pressure and downstream static pressure conditions. 

For the cascade system shown in Fig. 1, AB and CD are periodic boundaries and 

periodic conditions are set here. 

Specification of upstream and downstream conditions is somewhat more 

difficult.  For an isolated cascade, boundary conditions for the differential 

equations may be known at both upstream infinity and downstream infinity. 

However, since computation economics argues for placing grid points in the 

vicinity of the cascade and minimizing the number of grid points far from the 

cascade, the upstream and downstream computational boundaries should be set as 

close to the cascade as is practical.  In addition, with the particular 

body-fitted coordinates used, as the upstream boundary moves further upstream, 

the angle between pseudo-radial and pseudo-azimuthal coordinate lines becomes 

smaller.  Decreasing the coordinate angle causes the coordinate system to 

24. Liu, N.S., Shamroth, S.J. and McDonald, H.:  Numerical Solution of the 
Navier-Stokes Equations for Compressible Turbulent Two/Three Dimensional 
Flows in the Terminal Shock Region of an Inlet/Diffuser.  AIAA Paper 
83-1892, 1983. 

25. Briley, W.R. and McDonald, H.:  Computation of Three-Dimensional Horseshoe 
Vortex Flow Using the Navier-Stokes Equations.  Seventh International 
Conference on Numerical Methods in Fluid Dynamics, 1980. 

12 



to become less well-conditioned, increases truncation error (Ref. 26), and 

increases the role of cross-derivative terms in the equations.  All of these 

characteristics could be detrimental to the present numerical procedure and, 

therefore, they also argue for placing the upstream boundary as close to the 

cascade as possible.  However, when the upstream boundary is placed close to 

the cascade, most flow function conditions on the boundary will not be known, 

since these will have been changed from values at infinity by the presence of 

the cascade. 

In the present approach, the suggestion of Ref. 25 is followed which sets 

total pressure on boundary BC (see Fig. 1).  Unless boundary BC is very far 

upstream, the flow velocity along this boundary will not be equal to the 

velocity at upstream infinity since some inviscid deceleration will have 

occurred.  However, as long as the boundary is upstream of the region of any 

significant viscous or shock, phenomena, the total pressure on this boundary 

will be equal to the total pressure at upstream infinity.  Hence, total 

pressure is an appropriate boundary condition realistically modeling the 

desired flow condition.  In addition to specifying upstream total pressure, it 

is necessary to specify the inlet flow angle.  In the present calculation, a 

value was assumed constant on the upstream boundary at a specified value.  The 

third condition set on the upstream boundary concerns the density and a zero 

density derivative at this boundary was specified as a numerical treatment of 

the boundary.  The downstream boundary was treated by setting a constant static 

pressure as a boundary condition, and by setting second derivatives of both 

velocity components equal to zero at this location.  In the present 

application, a constant static pressure was set at downstream infinity, and 

hence it is assumed that the downstream boundary is located in a region where 

pressure is uniform. 

Both the upstrem and downstream boundaries have boundary conditions 

associated with them which are nonlinear functions of the dependent variables. 

These are the specifications of total pressure on the upstream boundary and 

static pressure on the downstream boundary.  These nonlinear boudnary 

conditions are linearized in the same manner as the governing equations (via a 

Taylor expansion of the dependent variable in time), and then solved implicitly 

26. Mastin, C.W.:  Error Induced by Coordinate Systems, Numerical Grid 
Generation, J.F. Thompson, Ed., Elsevier Publishing, New York, 1982. 
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along with the interior point equations.  The final boundary conditions to be 

considered are the conditions along the blade surface.  Here no-slip and no 

through-flow conditions were applied leading to a specification of zero 

velocity on the surface.  An inviscid transverse momentum equation was applied 

on the surface leading to a boundary condition approximation of zero transverse 

pressure gradient being applied. 

III.  CURRENT EFFORTS 

Current efforts pursued under the present contract consisted of three 

parts:  computer code speed-up, turbulence model studies and consideration of 

time-dependent, forced vibration-type boundary conditions.  These are now 

discussed in detail. 

Code Efficiency 

The original cascade computer code was a very general code which was 

written for maximum flexibility.  In this regard, equations, boundary 

conditions, dependent variables, coordinate systems, difference schemes, etc. 

could be easily changed and the choice of equations and boundary conditions 

were made by the user.  For example, user specified input determined if an 

energy equation was solved or constant total enthalpy assumed, the choice of 

two- or three-dimensional flow was made via input and the choice of 

constructive versus quasi-linear equations form was made by input.  In 

addition, several options such as reacting flow, two-phase flow, cylindrical 

polar geometry, etc. which are not relevant to the cascade problem were 

available. Although this generality is very desirable from the viewpoint of 

deck development and deck, flexibility, it does require a price in terms of 

computer run time.  Therefore, as a first item under the present effort the 

existing code was modified to increase deck efficiency. 

The modifications still allow considerable generality such as choice of 

equations, choice of boundary conditions, arbtrary geometry, conservative or 

quasi-linear equation form, etc.  However, certain portions of the code not 

required for cascade calculations such as cylindrical polar coordinates and 

reacting flow were eliminated.  In addition, the original matrix inverter was 

replaced by a more efficient procedure and the computational coordinates were 

assumed to be equally spaced.  It should be noted that since the computational 
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coordinates are general non-physical coordinates, see Eq. (1), this does not 

place a restriction on nonuniform meshes in physical space and, in fact, all 

cases run to date were run with equally spaced computational coordinates. 

The resulting modification decreased computer run time by approximately 55 

per cent and, therefore, allows considerable additional computer runs for a 

given computer budget. The new code requires approximately 0.0034 sees per 

grid point per time step for a code operating with an out-of-core option.  If 

the code were run completely in core, this time would reduce to approximately 

0.0025 sees.  It is estimated that an additional factor of 2 saving could be 

obtained without loss of generality with further code restructuring. 

Obviously, even further savings are available with code vectorization and/or 

modifications restricting generality. 

Turbulence Model Modifications 

One major focus of the present effort was further consideration, and 

possible modification, of turbulence models in the existing computer program. 

At the beginning of the present phase, the code allowed for either of two 

turbulence models; these were a mixing length model and a turbulence energy - 

algebraic length scale model. 

In the mixing length model, the turbulent viscosity is related to the mean 

strain via a mixing length, £., such that 

MT= P I 
1/2 

(3ui    (3ui \ du\ LL 
dx- (3X| /  (3xj 

(7) 

where UT is the turbulent viscosity, p is the density, £ is the mixing 

length, u-L is the i*^^ velocity component and x-^ is the i^'^ Cartesian 

direction.  Summation is implied for the repeated indices.  The question now 

arises as to specification of £.  For the region upstream of the trailing edge 

the mixing length is specified in the usual boundary layer manner; i.e. 
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where < is the von Karman constant and y"^ is the dimensionless normal 

coordinate, jruf/v.  In boundary layer analysis %iax ^^ usually taken as 

0.096 where 5 is the boundary layer thickness taken as the location where 

u/ug = 0.99. However, this definition of 6 assumes the existence of an outer 

flow where the velocity Ug is independent of distance from the wall at a 

given streamwise station, i.e., it assumes Ug is only a function of the 

streamwise coordinate.  Although a boundary layer calculation will yield 

solutions in which u approaches Ug asymptotically at distances far from the 

solid no-slip surface, Navier-Stokes solutions for cascade flow fields do not 

in general predict a region where u asymptotes to a constant value. 

Furthermore, measurements of the flow also show no such region to exist in 

general.  Obviously, a proper choice of 6 for the Navier-Stokes cascade 

analysis is not straight forward.  Calculations made in Refs. 4 and 7-9 have 

set the boundary layer thickness by first determining u^j^^j, the maximum 

streamwise velocity, at a given station and then setting 6 via 

^" "max  "I' 

;l.e., 5 was taken as twice the distance for which u/u^^^ = kj^.  Two values 

of k]^ were used in the previous efforts; these were 0.80 and 0.95.  Although 

the predicted pressure distribution was relatively insensitive to choice, the 

boundary layer development did depend upon the choice of kj^. 

The model used in the wake is also a mixing length model in which the 

mixing length was made proportional to the wake height, 6, and a linear of 

growth of 6 with distance was assumed based upon the classical free jet 

boundary results (e.g. [27]). With the free jet boundary growth assumption 

S= (Sp3+S33) +(.2){X-X^E) (10) 

where 5pg and 6gg are the pressure and suction surface trailing edge 

boundary layer thickness and x^g is the trailing edge location.  The mixing 

length, Z,  was taken as 0.26. 

27.  Schlichting, H.:  Boundary Layer Theory, McGraw Hill, New York, 
1960. 
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Using this formulation, calculated profiles were compared with measured 

profiles for the data of Hobbs, Wagner, Dannenhoffer and Dring (Ref. 16).  In 

Ref. 16, boundary layer profiles were measured on both the suction and pressure 

surfaces in the vicinity of the blade trailing edge region.  In this regard, it 

should be noted that the resulting boundary layers on both surfaces are 

subjected to strong favorable pressure gradients followed by adverse pressure 

gradients with these effects being considerably more pronounced on the suction 

surface.  Therefore, the boundary layer at the trailing edge has a history of 

both strong favorable and adverse pressure gradients and its profile depends 

both upon this history and the transition point location. 

The comparisons of Ref. 4 showed very good agreement between the measured 

profiles and the calculated profiles on the pressure surface.  On the suction 

surface agreement, although acceptable, was not as good.  In addition, the 

choice of the variable, k^, (see Eq. (9)) could significantly change the 

calculated profile.  Therefore, a more detailed study of the turbulence model 

was warranted. 

As a first step in the re-evaluation, the code was used to calculate a 

constant pressure turbulent boundary and the resulting profile is compared to 

data compilations in Fig. 2. As can be seen, the predicted profile is in good 

agreement with the compiled data.  In this calculation 

S = 2.0v 
("/"max =0.8) (11) 

These results in conjunction with the boundary layer profiles presented in 

Ref. 4 indicate reasonable agreement between calculation and experiment can be 

obtained using the mixing length model with a proper choice of 6.  Obviously, 

these results are preliminary and not conclusive.  To be made conclusive, 

considerably more comparisons with data would be required. 

The major obstacle in using the mixing length model resides in the 

specification of the length scale 6, and it may be advantageous to utilize a 

turbulence model which does not require specification for a length scale.  One 

model which fits this requirement is the so-called k-e model which solves 

governing equations for the turbulence energy, k, and the turbulent 

dissipation, e, and then calculates p-p from these quantities.  The equations 

governing the development of k and e  have been given by several authors 
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(e.g. Launder and Spalding Ref. 28).  One form in which the equations may be 

expressed is 

<3pk dpuk       dpuk 

3y 

d 

>^A- d«           dx   )   ax - p€ + D 
(12) 

dp€        dpue       dp\j€ d     /    p.    \ 

dT"    dx "^  dy  ' 7^ L\^ "^ ~ / 

+ C 
I k H- .c dx. 

j 

dx, dx, - C, 
P^' 

2 k + E 
(13) 

/^T = /'C^'^ /^ 
(14) 

where D, E, Cj, C2, C^, a^ and a^ are functions which vary from 

particuar model to model. A recent comparison of several k-e models has been 

given by Patel, Rodi and Scheuerer (Ref. 29).  In the present analysis the 

28. Launder, B.E. and Spalding, D.B.:  The Numerical Computation of Turbulent 
Flows, Computer Methods in Applied Mechanics and Engineering, Vol. 3, 
1974, pp. 269-287. 

29. Patel, V.C, Rodi, W. and Scheurer, G.:  Evaluation of Turbulence Models 
for Near Wall and Low Reynolds Number Flows.  Third Symposium on Turbulent 
Shear Flow.  University of California, Davis, 1981. 

18 



following functional forms were set 

CTg   n    1.3 

C, =  1.43 

r 1 ^'^^ C^ =  0.09 exp[-2.5/(l + R^/50)J 

Cg =  1.92 [l.0-0.3exp(-R2)] 

ak"2   dk''2 
2/x 

ax.    ax. 

2fiix^ I 

\ \ 

This corresponds to equations given by Launder and Spalding in Ref. 28. 

Further discussion of the equations is given in some detail in Refs. 28 and 29, 

A similar Navier-Stokes code using the same equations and the same 

algorithm has been run at SRA under an Army Research Office program to 

calculate a transonic shock boundary layer interaction in a constant radius 

tube (Ref. 30), and these results are repeated here since they demonstrate a 

30. McDonald, H., Roscoe, D.V., Gibeling, H.J. and Shamroth, S.J.:  Progress 
Report for Contract DAAG29-80-C-0082, December 1981. 
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transonic calculation.  The case considered had supersonic inflow in a straight 

tube with a near normal shock resulting from the specified back pressure.  The 

calculation was run to correspond with data of Mateer, Brosh and Viegas 

for both a mixing length and a k-e model (Ref. 31). A comparison of calculated 

and measured pressure distributions is given in Fig. 3.  As can be seen, 

agreement is very good. A comparison for the predicted and measured streamwise 

velocity profiles is presented in Fig. 4.  Both calculations show good 

agreement with data although the mixing length calculation is in slightly 

better agreement with data than is the k-e calculation.  These results give 

encouragement for the use of the k-e model in non-simple viscous flow fields 

where a mixing length application may not suffice and give impetus to the 

inclusion of thse models in the cascade deck.  However, as discussed in Ref. 

29, k-e models are not always satisfactory even in simple boundary layers so 

the approach is taken with some caution. 

Under the present effort, Eqs. (12) and (13) have been incorporated into 

the Navier-Stokes cascade code and the subsonic cascade configuration of 

Hobbs, et al (Ref. 16) has been recalculated.  A plot of predicted and measured 

blade pressure distribution is shown in Fig. 5 which compares measured data 

with mixing length and k-e calculations.  As can be seen, both calculated 

pressure distributions are nearly the same and agree well with the measured 

data. 

Predictions of the boundary layer profile are given in Figs. 6-9. 

Although the calculations presented in Ref. 4 give good agreement with data, 

they were run for a value of k^ = 0.95 in Eq. (9) which appears to be 

unrealistically large.  Therefore, the mixing length calculations were rerun 

for k = 0.90 which appears to be a more reasonable value.  Calculations were 

also run for fully turbulent and forced transition situations.  It should be 

recalled that when the mixing length model is used, the flow is considered 

turbulent throughout with the turbulent viscosity over the airfoil set by Eqs. 

(7) through (11).  Since the maximum length scale is determined by the boundary 

layer thickness, the turbulent viscosity is small in the leading 

31. Mateer, G.G., Brock, A. and Viegas, J.R.:  A Normal Shock-Wave Turbulent 
Boundary Layer Interaction at Transonic Speeds.  AIAA Paper 76-161, 1976. 
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edge region and the flow is essentially laminar here.  However, a turbulent 

viscosity is calculated throughout; this calculation is termed the fully 

turbulent calculation. Alternatively, the calculation can be run in a mode 

where the turbulent viscosity is set to zero upstream of a specified streamwise 

location.  This is termed the forced transition model.  Similarly when the k-e 

model is utilized, it predicts a turbulent viscosity throughout the flow.  In 

certain regions, this viscosity may be small and in these regions the flow will 

be laminar.  However, a calculation can be made whereby the turbulent viscosity 

is set to zero upstream of a specified location.  This latter mode is termed 

the forced transition mode. 

Predictions of the pressure surface boundary layer are given in Figs. 6 

and 7.  Figs. 6 and 7 compare fully turbulent and free transition models for 

the mixing length and k-e models respectively.  As can be seen, agreement in 

all cases is good.  In all cases of forced transition, laminar flow was imposed 

for s/c < 0.18 which is the location where transition steps were placed in the 

experiment. 

Predictions of the suction surface boundary layer is given in Figs. 8 and 

9.  The mixing length calculations are given in Fig. 8 where as shown the 

forced transition calculation is in much better agreement with the data than is 

the fully turbulent calculation.  This calculation, in conjunction with other 

calculations, indicate that the calculated suction surface boundary layer 

profile is sensitive both to the chosen value of k^  and the assumption of 

free or forced transition.  The major effect of requiring laminar flow for 

s/c < .18 was to maintain a thinner boundary layer at the beginning of adverse 

pressure gradient regions.  This effect was then magnified as the boundary 

layer was subjected to the strong adverse pressure gradient and the results are 

shown in Fig. 8. 

Calculations made with the k-e model are given in Fig. 9.  As can be seen, 

differences again appear between the fully turbulent and forced transition 

model.  However, the effect of requiring laminar flow for s/c < .18, is not as 

pronounced in this case and both calculations predict boundary layers which are 

thicker than those measured experimentally.  It should be noted that the k-e 

equations do contain low Reynolds number effects.  These are incorporated in 

the model via the functional forms Cy and C2 and may account for near wall 

and/or transitional effects.  Although these models have been used with some 
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success for relaminarizing boundary layers (Ref. 32), their application to 

boundary layers in arbitrary pressure gradients has found only modest success 

(e.g. Ref. 29), and they have yet to be successfully applied to boundary layers 

in forward transition.  In regard to the forced transition k-e calculation this 

was run with the k-e equation solved throughout the entire flow field.  The 

results indicate that for compressor cascade flow fields a model capable of 

predicting transition accurately may be required to obtain accurate suction 

surface velocity profile predictions.  Therefore, based upon these results two 

possible approaches for further turbulence model work appear viable.  The first 

would be to concentrate upon application of the k-e model to flows in forward 

transition.  The second would investigate alternate k-e type models such as 

those discussed in Ref. 29. 

Unsteady Boundary Conditions 

To date, the Navier-Stokes cascade analysis has focused upon steady or 

unsteady flows through a cascade of stationary airfoils.  Another important 

problem area is that of flow through a cascade in which the blades are moving 

relative one to another.  This problem arises in connection with free-vibration 

or flutter phenomena in the compressor or turbine stages of modern 

turbomachinery or engine configurations.  Early approaches to this problem were 

based upon classical linear analyses which assumed flat plate blades at zero 

incidence to the mean flow (e.g. Ref. 33).  Although these procedures can give 

useful insight into the fluid dynamic process, they are obviously limited by 

their assumptions of zero mean incidence, zero thickness and camber and 

inviscid flow. More recent analyses although confined to inviscid flows have 

removed the zero mean incidence and flat geometry restrictions (e.g. Ref. 34). 

Although these still treat the time-dependent flow as a linear perturbation 

32. Jones, W.P. and Launder, B.E.:  Some Properties of Sink Flow Turbulent 
Boundary Layers, Journal of Fluid Mechanics, Vol. 46, 1972, pp. 337-351. 

33. Whitehed, D.S.:  Vibration and Sound Generation in a Cascade of Flat 
Plates in Subsonic Flow. Aeronautical Research Council R and M 3685, 
1970. 

34. Verdon, J.M. and Caspar, J.R.:  Development of an Unsteady Aerodynamic 
Analysis for Finite-Reflection Subsonic Cascades.  NASA CR-3455, 1981. 
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from the mean flow, they represent a more general analysis. 

Under the present effort, initial consideration was given to application 

of the Navier-Stokes cascade analysis to the oscillating cascade problem so as 

to reduce the inviscid and small perturbation assumptions.  Since the present 

procedure solves the time-dependent equations in a general coordinate system 

which may be a function of time, the procedure is clearly applicable to the 

oscillating cascade problem.  However, boundary condition specification 

presents a difficulty. 

One approach in principle which is not practical would consider all N 

blades of an N-bladed cascade with the azimuthal coordinate of the cascade 

varying between 0° and 360°.  Since the points at 0" and 360° are physically 

the same point, a true periodic boundary condition could be applied. 

Alternately an N-bladed recti-linear cascade could be considered.  If N were 

large, then the flow in the middle passage might be relatively insensitive to 

the boundary conditions applied at stagnation lines and wake lines for blades 1 

and N.  Unfortunately, either of these options would be impractical due to the 

large number of grid points required and, therefore, an alternative formulation 

is sought whereby the flow in a given passage or between two adjacent flow 

periodic lines in the steady case represents the flow in any passage (or 

between any two adjacent flow periodic lines) in the cascade.  Obviously, if 

the flow field is to exhibit such periodicity, the driving blade motion must 

exhibit a periodicity.  The general type of blade motion can be given for the 

m^'^ blade by 

Xjj = S^f^(cj| t + <;t, + m^c^) 

(16) 

where x^j and y^  are displacement of the blade from its mean position a is a 

constant interblade phase angle, and f represents a periodic function and 6^ 

and Sy  represent oscillation amplitudes.  This represents a moving wave 

through the blade row. 
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Turning to Fig, 1, the problem can be illustrated by the question of what 

boundary conditions on boundaries BA and CD will represent the motion specified 

by Eq. (16) of all blades external to this portion of the flow field.  Since a 

periodic solution with phase lag is sought, then the dependent variables on 

corresponding points of lines AB and CD must bear a periodic type relation.  If 

the value of any dependent variable, f, obtained for a steady solution is 

denoted ^  and 

(>C,)=^-* (17) 

Then ^Q  = ip^ since these represent corresponding periodic points.  For the 

unsteady case, the solution sought is one in which the disturbed variable, 

i^l)   is periodic with a possible interblade phase lag between corresponding 

points; i.e. if 

(v^,)^ = f(a;t + <^^) (18) 

then 

(V/|)^ = f{a;t + <f>^)   = f(cut + (^g + a) 

The problem obviously arises as to the choice of the periodic function f 

and the phase angle ^Q  which may be a function of the spatial coordinates. 

These must be determined from some other source as they are boundary conditions 

to the viscous problem.  One possible method would determine f and ^Q  from a 

small perterbation solution such as that of Ref. 34.  For example, if the blade 

motion for blade m is given by 

(19) 
Xd = 0 

y^   = € coslojt + mo-) 
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where ei, o) and a are specified and the inviscid, small perturbation solution 

for the dependent variable T at point G is 

^ = v// + (i//,)g = vj/ + €2 cos(aJt + <p^) (20) 

then at point L 

^ = \|/ + (\|/,)L = ^ + €2 cos(aJt + <pQ - 0-) (21) 

and a periodic type boundary condition of the type 

[^-\//]    cos(cut + c^Q -0-)   =   [^-v|/]     coslcut + c^g) (22) 

results.  If <(iQ is specified for each point on the periodic boundary, then 

Eq. (22) represents a possible boundary condition relating variables G and L. 

The existing Navier-Stokes cascade code has been extended to allow a boundary 

condition of the form of Eq. (22). 

A second possible approach follows that of Erdos, Alzner and Kalben in 

their application of the Euler equations to cascade problem (Ref. 35).  In this 

approach, the equations are solved in the passage region between points L' and 

G' where L' and G'' are periodic points in steady flow as are G' and L'' (see 

Fig. 1).  In this approach, the dependent variables at G' are related to those 

at L'' at some earlier time depending upon interblade phase angle.  Similarly, 

the dependent variables at L' are related to those at G''.  With this approach, 

the second sweep equations which solve along lines F G' and M L' are solved 

with specified function boundary conditions.  This approach will require some 

run time to establish the moving wave disturbance type flow.  In addition, 

application of these boundary conditions may adversely affect stability. 

However, the formulation does represent a possible approach. 

CONCLUDING REMARKS 

The present report represents continuation of an effort aimed at applying 

the Navier-Stokes equations to subsonic and transonic, turbulent cascade flow 

fields.  During previous efforts, work focused upon development of a cascade 

computational coordinate system, calculation of laminar and turbulent 

35.  Erdos, J., Alzner, A. and Kalben, P.:  Computation of Steady and Periodic 
Two-Dimensional Non-linear Transonic Flow Problems in Turbomachinery, 
(T.C. Adamson and M.F. Platzer, Editors), Hemisphere Publishing, 
Washington, 1977. 
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cascade flows, development of a shock capturing technique and comparison of 

calculated flow fields with data.  Under the present effort, the computer code 

was revised to reduce run time, a turbulence energy-turbulence dissipation 

model was added to the code, a calculation was run to convergence with this new 

turbulence model and consideration given to the forced blade vibration 

problem.  The revised code runs more than twice as fast as the original code 

with little loss of code flexibility.  It is estimated that further 

restructuring would reduce run time by an additional factor of two without loss 

of generality.  The calculation run with the turbulence energy-turbulence 

dissipation model reached convergence with no problem.  The predicted surface 

pressure distribution agreed well with data, however, discrepancies were 

present between the calculated and measured suction surface boundary layer 

profiles.  One possible source of discrepancy is the laminar to turbulent 

transition process and future work should focus upon this phenomenon.  Finally, 

consideration has been given to the problem of boundary conditions for the 

forced vibration problem. 
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APPENDIX A - COORDINATE SYSTEM GENERATION 

In brief, the coordinate system consists of a set of two families of 

curves; the C = constant curves such as lines FG or HI in Fig. 1 and the 

n = constant curves such as ABCD or A'ED' in Fig. 1. The coordinate system is 

constructed by first forming the inner loop A'ED' which includes the blade. 

The blade may be either specified by an analytic equation or by discrete data 

points.  If an equation is used, then construction of the inner loop is 

straight-forward.  If the blade is specified by discrete data points, then, in 

general, the points required on the inner loop will not coincide with any point 

used for blade specification.  In this case, a curve fit is used to obtain the 

required inner loop points. The curve fit used is based upon a local parabolic 

fit.  For any given point required on the inner loop, a parabola is fit through 

three adjacent specifying points, two on the right and one on the left.  A 

second parabola is then fit through the two points on the left and one on the 

right.  The location of the required point is obtained via a weighted average 

of these curve fits with the weighting factor being determined by the distance 

from the required point to the center specifying point of each parabola.  This 

is followed by constructing an outer loop ABCD which consists of periodic lines 

AB and CD and a frontal curve EC.  Both the inner and outer loops are then 

represented by parametric curves 

x = x(s),  y = y(s) 

where the parameter varies from zero to unity.  The present coordinate 

generation process utilizes a multi-part transformation.  First x and y are 

expressed as a function of s', the physical distance along the curve.  Then s' 

is related to s via a hyperbolic tangent parametrization centered about the 

leading edge for the inner loop, and a cubic polynomial representation for the 

outer loop.  The inner loop transformation parametric representation is chosen 

so as to have rapid variation in the airfoil leading edge region.  Both the 

inner loop hyperbolic tangent transformation and the outer loop cubic 

transformation are performed between s'/2 and 0 and between s'/2 and s' on each 

loop.  This ensures that the distance in transformed space s between any point 

on the upper periodic line, line AB, and point A is the same as the distance in 

transformed space between the corresponding point on the lower periodic line. 
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line CD, and point D. Similarly, corresponding points on the branch cut will 

be equi-distant in s from the branch cut end points, points A' and D'.  This 

property is required if corresponding branch cut points (and corresponding 

periodic line points) are to fall on the same pseudo-radial line. 

If N pseudo-radial lines are to be used, the grid points on each loop are 

chosen at values 

Sj = (i-l)/(N-l)        i= 0, N-l 

and points having the same value of s^^ on the inner and outer loops define 

the end points for a given pseudo-radial line (e.g. HI).  Since the loops are 

parameterized so that s varies rapidly in the region of the leading edge, this 

process effectively packs points into the leading edge region.  These points 

are then connected via cubic curve polynomials which allow specification of 

the slope at each end point (Ref. 7, SRA Rpt.).  For pseudo-radial lines which 

intersect the inner loop downstream of a user specified location (usually 

x/c < .05), the slopes are specified so as to be vertical or normal at the 

inner loop end points.  For pseudo-radial lines whose intersection with the 

inner loop is upstream of this location a smooth variation of the angle to the 

horizontail with distance around the leading edge is specified.  With this 

process, the pseudo-radial lines are vertical as they pass through the periodic 

lines (BA and CD) and, therefore, the metric data will be continuous across 

these lines.  This process allows construction of all pseudo-radial lines. 

The second set of coordinate lines, the pseudo-azimuthal lines (e.g. JPK) 

are obtained by normalizing the length along each line with a hyperbolic 

tangent transformation that packs points near the airfoil surface (or branch 

cut).  Then if M pseudo-azimuthal lines are to be used, the grid point for the 

jth pseudo-azimuthal point occurs at TJ = (j-l)/(M-l) for each 

pseudo-radial line.  The actual systems used in the present effort consisted of 

113 points along each loop and 30 points along each pseudo-radial line.  The 

plot shown in Fig. 1 is a computer generated plot for the Jose Sanz cascade in 

which all grid points are not included.  For clarity, radial lines in the 

vicinty of the leading edge were omitted and loops in the vicinity of the blade 

surface were omitted, leading to the non-smooth appearance of the grid. 
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The actual grid spacing normal to the surface was 4 x 10~5 chords at the 

blade surface and the spacing along the blade surface was 4.6 x 10~^ chords 

at the blade leading edge.  In addition, the grid extended two chords 

downstream of the airfoil trailing edge. 

In generating the coordinate system, it is usually necessary to adjust the 

parameters of the inner and outer loop transformation to control the location 

of the pseudo-radial lines, to maintain a smooth variation of metric data and 

to minimize coordinate nonorthogonality.  In some cases it may be necessary to 

add additional parameterizations to provide a suitable grid.  In general, the 

additional transformations used are local transformations which only affect 

specific regions of the loops.  For example, if it is desired to increase the 

parametric variation between points A and B, then 

s = s s < s A 

S* = S+ -|-[l-cos(7r{S-SA)/{Sa -SA))] S^ < S < Sg 

S' = S ■«■ €   S > S, 

would be a suitable local transformation. 
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APPENDIX B - SOLUTION PROCEDURE [23] 

I Background 

The solution procedure employs a consistently-split linearized block 

implicit (LBI) algorithm which has been discussed in detail in [12, 21]. 

There are two important elements of this method: 

(1) the use of a noniterative formal time linearization to 

produce a fully-coupled linear multidimensional scheme which 

is written in "block implicit" form; and 

(2) solution of this linearized coupled scheme using a consistent 

"splitting" (ADI scheme) patterned after the Douglas-Gunn [22] 

treatment of scalar ADI schemes. 

The method is thus referred to as a split linearized block implicit (LBI) 

scheme.  The method has several attributes: 

(1) the noniterative liearization is efficient; 

(2) the fully-coupled linearized algorithm eliminates instabilities 

and/or extremely slow convergence rates often attributed to methods 

which employ ad_ hoc decoupling and linearization assumptions to 

identify nonlinear coefficients which are then treated by lag and 

update techniques; 

(3) the splitting or ADI technique produces an efficient algorithm 

which is stable for large time steps and also provides a means for 

convergence acceleration for further efficiency in computing steady 

solutions; 

(4) intermediate steps of the splitting are consistent with the 

governing equations, and this means that the "physical" boundary 

!    conditions can be used for the intermediate solutions.  Other 

splittings which are inconsistent can have several difficulties in 

satisfying physical boundary conditions [21], 

(5) the convergence rate and overall efficiency of the algorithm are 

much less sensitive to mesh refinement and redistribution than 

algorithms based on explicit schemes or which employ ad hoc 

decoupling and linearization assumptions.  This is important for 

accuracy and for computing turbulent flows with viscous sublayer 

resolution; and 
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(6) the method is general and is specifically designed for the 

complex systems of equations which govern multiscale viscous flow 

in complicated geometries. 

This same algorithm was later considered by Beam and Warming [36], but the 

ADI splitting was derived by approximate factorization instead of the 

Douglas-Gunn procedure.  They refer to the algorithm as a "delta form" 

approximate factorization scheme.  This scheme replaced an earlier non-delta 

form scheme [37], which has inconsistent intermediate steps. 

Spatial Differencing and Artificial Dissipation 

The spatial differencing procedures used are a straightforward adaption 

of those used in [12] and elsewhere.  Three-point central differene formulas 

are used for spatial derivatives, including the first-derivative convection 

and pressure gradient terms.  This has an advantage over one-sided formulas 

in flow calculations subject to "two point" boundary conditions (virtually 

all viscous or subsonic flows), in that all boundary conditions enter the 

algorithm implicitly.  In practical flow calculations, artificial dissipation 

is usually needed and is added to control high-frequency numerical 

oscillations which otherwise occur with the central-difference formula. 

In the present investigation, artificial (anisotropic) dissipation terras 

of the form 

(1) 

are added to the right-hand side of each (k-th) component of the momentum 

equation, where for each coordinate direction Xj, the artificial 

diffusivity d^ is positive and is chosen as the larger of zero and the 

local quantity VQ  (o Re(^^-1)/Re.     Here, the local cell Reynolds number 

Re^xi ^°^  ^^^  j~th direction is defined by 

d a^u 
z j k 

j 
-/ -/ 

Re^x:j = Re jpuj j Axj/yg (2) 

This treatment lowers the formal accuracy to 0 (Ax), but the functional form 

is such that accuracy in representing physical shear stresses in thin shear 

layers with small normal velocity is not seriously degraded.  This latter 
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property follows from the anisotropic form of the dissipation and the 

combination of both small normal velocity and small grid spacing in thin 

shear layers. 

Split LBI Algorithm 

Linearization and Time Differencing 

The system of governing equations to be solved consists of three/four 

equations:  continuity and two/three components of momentum equation in 

three/four dependent variables:  p, u, v, w.  Using notation similar to that 

in [12], at a single grid point this system of equations can be written in 

the following form: 

8H((|))/3t = D((t)) + S(<j)) (3) 

where <j) is the column-vector of dependent variables, H and S are column- 

vector algebraic functions of ^,   and D is a column vector whose elements are 

the spatial differential operators which generate all spatial derivatives 

appearing in the governing equation associated with that element. 

The solution procedure is based on the following two-level implicit 

time-difference approximations of (3): 

(H"+1- H")/At = eCD^+V S"+^)  (1-B) (D'" + S^)        (4) 

where, for example, H^"*"^ denotes H((t)"+1) and At = t"^"*"! - t^.  The 

parameter 3 (0.5 - 3 - 1) permits a variable time-centering of the scheme, 

with a truncation error of order [At^, (3 - 1/2) At]. 

A local time linearization (Taylor expansion about ^^)  of requisite 

formal accuracy is introduced, and this serves to define a linear differen- 

tial operator L (cf. [12]) such that 

D"""^ = D" + A^^""^- $") + 0(At2) (5) 

Similarly, 

H^^l = H^ OH/9*)" (*"+l - <fr") + 0 (At^) (6) 

S''+^ = S''+ OS/3*)" (*"+^ - *") + 0 (At2) (7) 

Eqs. (5-7) are inserted into Eq. (4) to obtain the following system which is 

linear in 4)n+l 

(A - 3At L") (.j)""*"^ - *") = At (D" + S") (8) 
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and which is termed a linearized block implilcit (LBI) scheme.  Here, A 

denotes a matrix defined by 

A = (9H/9(t))" - 0At (3S/9(}))'^ (9) 

Eq. (8) has 0 (At) accuracy unless H H <|), in which case the accuracy is the 

same as Eq. (4). 

Special Treatment of Diffusive Terms 

The time differencing of diffusive terms is modified to accomodate 

cross-derivative terms and also turbulent viscosity and artificial dissipa- 

tion coefficients which depend on the solution variables.  Although formal 

linearization of the convection and pressure gradient terms and the resulting 

implicit coupling of variables is critical to the stability and rapid con- 

vergence of the algorithm, this does not appear to be important for the 

turbulent viscosity and artificial dissipation coefficients.  Since the 

relationship between \1Q  and dj and the mean flow variables is not conven- 

iently linearized, these diffusive coefficients are evaluated explicitly at 

t'^ during each time step.  Notationally, this is equivalent to neglecting 

terms proportional to 9 ]iQ/d^  or 9dj/9(}i in L", which are formally pre- 

sent in the Taylor expansion (5), but retaining all terms proportional to 

He or dj in both L" and D"^. 

It has been found through extensive experience that this has little if 

any effect on the performance of the algorithm.  This treatment also has the 

added benefit that the turbulence model equations can be decoupled from the 

system of mean flow equations by an appropriate matrix partitioning (cf. 

[21]) and solved separately in each step of the ADI solution procedure.  This 

reduces the block size of the block tridiagonal systems which must be solved 

in each step and thus reduces the computational labor. 

In addition, the viscous terms in the present formulation include a 

number of spatial cross-derivative terms.  Although it is possible to treat 

cross-derivative terms implicitly within the ADI treatment which follows, it 

is not at all convenient to do so; and consequently, all cross-derivative 

terms are evaluated explicitly at t"^.  For a scalar model equation 

representing combined convection and diffusion, it has been shown by Beam and 

Warming [38] that the explicit treatment of cross-derivative terms does not 

degrade the unconditional stability of the present algorithm.  To preserve 

notational simplicity, it is understood that all cross-derivative terms 

appearing in L^ are neglected but are retained in D".  It is important to 
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note that neglecting terms in L'^ has no effect on steady solutions of Eq. (8), 

since ^'^'^^  - ^^ = 0,   and thus Eq. (8) reduces to the steady form of the 

equations:  0^ + 5"^ = 0.  Aside from stability considerations, the only 

effort of neglecting terms in L" is to introduce an 0 (At) truncation error. 

Consistent Splitting of the LBI Scheme 

To obtain an efficient algorithm, the linearized system (8) is split using 

ADI techniques. To obtain the split scheme, the multidimensional operator L is 

rewritten as the sum of three "one-dimensional" sub-operators L-j^ (i = 1, 2, 3) 

each of which contains all terms having derivatives with respect to the i-th 

coordinate.  The split form of Eq. (8) can be derived either as in [12, 21] by 

following the procedure described by Douglas and Gunn [22] in their 

generalization and unification of scalar ADI schemes, or using approximate 

factorization. For the present system of equations, the split algorithm is given 

by 

(A - BAtLj) (<!)* - ^^)   = At (D" + S") '   (10a) 

(A - gAtL^) (({)** -<))")= A (4)* - ^^) (10b) 

(A - BAtL3) (<i.'''^^ - (j)"") = A (*** - <))'') (10c) 

where <j)* and <^**  are consistent intermediate solutions.  If spatial 

derivatives appearing in L^  and D are replace by three-point difference 

formulas, as indicated previously, then each step in Eqs. (lOa-c) can be solved 

by a block-tridiagonal elimination. 

Combining Eqs. (lOa-c) gives 

(A - BAtL^) A"^ (A - PAtL") A"^ (A - BAtL^) (^^'^^  -  ^^)   = At (D^ + s"^)     (11) 

which approximates the unsplit scheme (8) to 0 (At^).  Since the intermediate 

steps are also consistent approximations for Eq. (8), physical boundary 

conditions can be used for <\>*  and (j)** [12, 21].  Finally, since the L;j^ 

are homogeneous operators, it follows from Eqs. (lOa-c) that steady solutions 

have the property that (jj^+l = <))* = (^**  =  ^  and satisfy 

D" + S"^ = 0 (12) 

The steady solution thus depends only on the spatial difference approximations 

used for (12), and does not depend on the solution algorithm itself. 
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